meta data for this page
  •  

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
Last revisionBoth sides next revision
a_mechanik:schwingungen [31 May 2014 16:09] chnowaka_mechanik:schwingungen [24 June 2014 14:52] chnowak
Line 1: Line 1:
 =======Schwingungen======= =======Schwingungen=======
  
-=====Welche physikalischen Größen charakterisieren ganz periodische Schwingungen====== 
  
 =====Harmonische-, gedämpfte-, erzwungene Schwingung===== =====Harmonische-, gedämpfte-, erzwungene Schwingung=====
Line 52: Line 51:
  
  
-In diesem Graphen sieht man, wie sich unterschiedliche Dämpfungen auf den zeitlichen Verlauf der Auslenkung auswirkt. Wenn das Quadrat der Dämpfung kleiner ist als das Verhältnis von der Federkonstanten k und der Masse m tritt der zierwartende Schwingfall mit exponentiellen Abfall der Amplitude. ist +In diesem Graphen sieht man, wie sich unterschiedliche Dämpfungen auf den zeitlichen Verlauf der Auslenkung auswirkt. Wenn das Quadrat der Dämpfung kleiner ist als das Verhältnis von der Federkonstanten k und der Masse m tritt der zu erwartende Schwingfall mit exponentiellen Abfall der Amplitude. Ist Das Verhä 
  
  
Line 60: Line 59:
 ====Erzwungene Schwingungen==== ====Erzwungene Schwingungen====
  
-**Erzwungenen Schwingungen** wird der schwingende Oszillatior konstant mit einer Anregungsfrequenz $\omega$ angeregt. Somit schwingt er mit einer konstanten Amplitude+**Erzwungenen Schwingungen** wird der schwingende Oszillator konstant mit einer Anregungsfrequenz $\omega$ angeregt. Somit schwingt er mit einer konstanten Amplitude. Der Verlauf des Graphen ist genau wie bei dem harmonischen Oszilator
  
 Differentialgleichung: $$\frac{d^{2}x}{dt^{2}}+\frac{b}{m} \frac{dx}{dt} +\frac{k}{m}x=\frac {F_a}{m} \cos (\omega_a t - \varphi)$$ Differentialgleichung: $$\frac{d^{2}x}{dt^{2}}+\frac{b}{m} \frac{dx}{dt} +\frac{k}{m}x=\frac {F_a}{m} \cos (\omega_a t - \varphi)$$
 +
 +Auf der rechten steht die Kraft $F_a$ und ein Kosinus für die periodische Anregung. Diese kompensieren die Dämpfung und lassen das System weiter schwingen.
  
  
Line 87: Line 88:
 $$\tan \varphi = \frac{2\delta \omega_a}{\omega_0^2-\omega_a^2}$$ $$\tan \varphi = \frac{2\delta \omega_a}{\omega_0^2-\omega_a^2}$$
  
- 
- 
-======Grenzfälle bei Schwingungen====== 
- 
- 
- 
-